
Logit Difficulty as a Linear Combination 

If Prince John has assigned us, with a severe penalty for failure, the problem of determining the 

proficiency of all the archers in the realm subject to the constraint that many of the contestants 

could not or would not appear on the same field, a reasonable set of agents might be shooting 

arrows at targets. Each target would have an inherent difficulty that could be estimated readily 

with a suitable field trial, data analysis, and software package.  

It may, however, save us time and trouble to think about the difficulty of each task, not as a 

vague amalgam of unspecified characteristics, but as a specific linear combination of more basic 

components (and an error term) that describe what makes a target difficult to hit. Important 

components might include, for example, size of the bull’s-eye, distance from the archer, 

movement of the target, wind, and elevation. 

We will begin once again with the basic form for dichotomously scored items, which you are 

probably tired of looking at. The probability of archer v succeeding on target i is a simple 

function of the logit “distance” between the archer and the target: 
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,  where  and i are the logit versions of the ability and 

difficulty parameters and equal to the natural logs of  

and i respectively. 

In Fischer’s (1973) Linear Logistic Test Model (LLTM), the difficulties are restricted somewhat 

to be linear combinations of more basic parameters.  

7. ikiki ew   , k are the basic parameters and wik are the known coefficients 

for this item.  

The decomposition can be inflicted on any of the Rasch models mentioned above, but for the 

dichotomous case, the probability of observing a response of 1 is: 
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While, at first blush, this may not seem to make things easier, typically there are far fewer 

identifiable components than possible targets in the world so it can be a very parsimonious 

description of the tasks. 

At the risk of stretching the archery analogy too far, we’ll propose three two-level components 

for the difficulty of a target: 122 cm. or 60 cm. diameter targets, 30 m. or 90 m. distance, and 

stationary or swinging. The eight distinct target templates can then be described with four 

parameters as:  
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LLTM was proposed, formalized, and implemented by Gerhardt Fischer et al (1973, 1977, 1987, 

1995). The idea originated from consideration of the cognitive operations required to solve math 

test problems. Scheiblechner (1972) decomposed the items into seven operations (negation, 

disjunction, conjunction, …). The item’s difficulty was then expressed as a linear combination of 

these basic operations. Decomposing the tasks into basic operations wasn’t original; using Rasch 

methods to derive sufficient statistics and sample-freed estimators was. 

The design matrix for this situation does not simply indicate the presence of the condition, but 

indicates the number of times each operation is required in the problem’s solution. For example, 

a possible decomposition of a specific set of items might include: 

10.  





























































 



7

6

5

4

3

2

1

7

1

)(

(

)(

...

0001201

0001010

0000012

][

















nconjunctio

ndisjunctio

negation

w
j

jiji  

Typically, the number of possible operations, p, is much smaller than the number of items so   

can provide a very parsimonious description of the items. It can be the basis of a fuller 

understanding of what makes an item difficult and suggests the possibility of generating new 

items at precise levels of difficulty. While the estimation of the basic parameters can be handled 

with least squares and the Pair algorithm we are so taken with, it would not be in keeping with 

the philosophy of Fischer and the Viennese school to use anything less than full conditional 

maximum likelihood (CML). Nor is there much reason not to use it, given the current power of 

computing and the availability of open-source software (Mair & Hatzinger, 2007). When CML is 

used, likelihood ratio tests are naturally available for a variety of interesting hypotheses. 

By properly constructing the design matrix {wi}, the model has also been applied to study the 

effects of item position (Hahne, 2008; Hohensinn et al., 2008; Kubinger, 2008) and less 

intuitively, the measurement of change (Fischer & Molenaar, 1995). In all likelihood, its greatest 

impacts should be in the decomposition and modelling of item difficulties (Gorin & Embretson, 

(2006); Newstead, et al., 2006), assessment engineering (Gierl & Haladyna, 2012; Luecht, 2013), 

and  more or less automated item generation Newstead, et al., 2006; Poinstingl, 2008; 

Sonnleitner, 2008). 



The Linear Logistic Test Model is a very powerful and very significant addition to the Rasch 

extended family; it still pays homage to Rasch’s Specific Objectivity, sufficient statistics, and 

sample-freed estimators. While Fischer and his disciples like to call LLTM an extended Rasch 

Model (hence, the e in the R-package, eRm (Mair and Hatzinger, 2007),) LLTM is a Rasch Model 

in the sense I have used the term. It fits nicely under the general Rasch umbrella while blanketing 

almost the entire Rasch family (Fischer, 1973, 1995) unless I have finally mixed too many 

metaphors. 

Poisson Counts 

The Poisson form is the oldest child in the Rasch family; Rasch used it in the 1950’s to analyze 

oral reading after observing the number of words read and the number of errors made. The 

distribution is often presented in introductory probability courses as the distribution of rare 

events. A standard example is the number of defects in a bolt of cloth, which is roughly 

analogous to errors in writing or reading text. The probability of finding a defect at any given 

spot on the cloth is small; all spots are equally likely candidates for a defect; and there is no 

upper limit on the number of spots or the number of defects. Similarly for oral reading, the 

probability of misreading any word is small and all words are assumed equally likely to be 

misread. Perhaps more realistically, because all the probabilities are very small, there is no 

practical difference among them. 

The basic model is: 
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where ai is the count observed, and, in our case, i = i, where, in Rasch’s original study,  

is the proficiency of the person at reading aloud, and i is the easiness of the passage to be read. 

This expression yields a familiar looking estimation equation for the relationship of two 

passages: 
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As a Rasch model, the Poisson has been successfully applied to counts of errors made in oral 

reading (Rasch, 1960), of errors of various types in written essays (Andrich, 1973), of number 

of words read in a given time, of time taken to complete a task, of points scored in various 

games, and variety of cases where the score was a count of events with no definite upper limit. 

Generally, the number of trials (e.g., words that might be read or points that might be scored) 

is large compared to the number of events (e.g., words actually read, mistakes made, or points 

scored). The details are in Rasch (1960), Andrich (1973, 1988), and Smith & Smith (2004). 

The advent of computerized scoring of extended response items might lead to renewed 

popularity of the Poisson Rasch, because computers are really patient when counting things. 

Many types of counts could be collected for any examinee work sample and reported 

diagnostically. And then combined, or not, into a summary being assured that the sum of 

Poissons is still a Poisson. 

 


